Spatial summation of first-order and second-order motion in human vision
نویسندگان
چکیده
منابع مشابه
Spatial summation of first-order and second-order motion in human vision
This study assessed spatial summation of first-order (luminance-defined) and second-order (contrast-defined) motion. Thresholds were measured for identifying the drift direction of 1c/deg., luminance-modulated and contrast-modulated dynamic noise drifting at temporal frequencies of 0.5, 2 and 8Hz. Image size varied from 0.125 degrees to 16 degrees . The effects of increasing image size on thres...
متن کاملSecond-order spatial summation in amblyopia
Amblyopes show bilateral loss of sensitivity for second-order (contrast defined) stimuli that can be further suppressed by flanking second-order stimuli (whereas flanks facilitate sensitivity in normal observers). The suppressive flank effect in amblyopes might be explained by abnormal pooling of second-order contrast across visual space. In this study, we investigate whether amblyopes show abn...
متن کاملBinocular summation of second-order global motion signals in human vision
Although many studies have examined the principles governing first-order global motion perception, the mechanisms that mediate second-order global motion perception remain unresolved. This study investigated the existence, nature and extent of the binocular advantage for encoding second-order (contrast-defined) global motion. Motion coherence thresholds (79.4% correct) were assessed for determi...
متن کاملMotion aftereffect of combined first-order and second-order motion.
When, after prolonged viewing of a moving stimulus, a stationary (test) pattern is presented to an observer, this results in an illusory movement in the direction opposite to the adapting motion. Typically, this motion aftereffect (MAE) does not occur after adaptation to a second-order motion stimulus (i.e. an equiluminous stimulus where the movement is defined by a contrast or texture border, ...
متن کاملEvidence for separate motion-detecting mechanisms for first- and second-order motion in human vision.
Current theories of second-order motion perception postulate that such motion is detected by either a high-level mechanism which computes the temporal correspondences between "features" extracted from the image, or low-level motion mechanisms which operate on a nonlinear, neural transformation of the luminance profile of the image. Theories which favour the latter strategy either suggest that f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vision Research
سال: 2010
ISSN: 0042-6989
DOI: 10.1016/j.visres.2010.05.032